Module Handbook | Module Handbook | T | |------------------------------|--| | Modul Name | Biosystematics | | Modul Level | Bachelor | | Abbreviation, If applicable: | BIC 200 | | Subheading, if applicable: | - | | Courses included in the | - | | module, if applicable: | | | Semester | Even (4 th Semester) | | Module Coordinator | Prof. Bambang Irawan | | Lectures | Prof. Bambang Irawan | | | Hamidah | | Language | Bahasa Indonesia | | Classification within the | Compulsory Course / Elective Studies | | curriculum: | | | Teaching format/ class hours | 300 minutes/ week | | per week during semester | Soo minutes, week | | Workload per semester | 100 min lecture + 100 min structural assignment + 100 min self- | | | assignment x 13 weeks; total 3900 min = 65 hours
65/25 = 2.6 ECTS | | Credit point | 2 | | Requirements | Vertebrate Comparative Anatomy, Plant Anatomy, Genetics | | Learning goals/competencies | General Competence (Knowledge) | | | This subject is designed in order for student to be able to | | | distinguish among the three school of taxonomy (evolutioner, | | | phenetics, and cladistics), construct the phenogram and | | | cladogram manualy, to analyzing the phylogenetic relationship, | | | and writing taxonomical description (analytic, diagnostic, and | | | diagnostic defferential). | | | Specific Competence | | | Explaining the scope of biosystematics and differencing it with | | | taxonomy. | | | 2. Explaining the taxonomy character and its use on studying the | | | kinship connection | | | 3. Explaining the connection of evolution with biodiversity | | | 4. Elaborating the kinship diagram (phylogeny tree) | | | 5. Making phonogram of 10 taxon | | | 6. Making cladogram of 10 taxon | | | 7. Describing the statistic of phylogeny diagram | | | 8. Calibrating phylogeny tree | | | 9. Explaining the kinship connection and classification of plant | | | 10. Explaining the kinship connection and classification of animal | | | 11. Comparing name of plant and animal | | Content | Systematics and phylogenetic reconstruction. Some terminologies | | | pertaining to biosystematic (taxa, phylogenetic relationship, | | | evolution, and biosystematics). Taxonomical characteristics and it | | | function. Concepts pertaining to species, taxon, grade, and clade. | | | Explanation and critics to the three main school of taxonomy: | | | evolutionary taxonomy, phenetic (numeric) taxonomy, and | | | phylogenetic cladistic) taxonomy. How to construct phenogram | | | and cladogram. Examples of phenogram and cladogram: case in | | | plants and animal. Classification system and its hierarchies and | | | catagories. How to write taxonomical description (analytics, | | | diagnostic, and differential). Nomenclature code. Classification of | | | organisms into emperium. Diagnostic description of Regnum: | | | Monera, Protoctista, Plantae, Fungi, and Animalia. | | Soft skill Attribute | Discipline and Argumentation | |--------------------------|--| | Study/ exam achievements | Students are considered to be competent and pass if at least get 40% of maximum. Final score (NA) is calculated as follow: Paper project (20%) + mid exam (30%) + final exam (40%) + soft skill (10%) Final index is defined as follow: A : 75 - 100 AB : 70 - 74.99 B : 65 - 69.99 BC : 60 - 64.99 C : 55 - 59.99 D : 40 - 54.99 E : 0 - 39.99 | | Form of media | LCD, computer | | Learning Method | Class and discussion | | Literature | c. Collins, J.T. (Eds). 1984. Principles and Methods of Phylogenetic Systematics: cladistics workbook. Special Competence Publication No. 12. University of Kansas, Museum of Natural History d. De Vogel, E.F. (Eds.). Manual of Herbarium Taxonomy, theory and practice.UNESCO e. Futuyma, D.J. 1986. Evolutionary Biology, 2 nd ed. Sinauer Associates, Inc. Sunderland, Massachusetts. f. Otte, D., Endler, J.A. (Eds). 1989. Speciation and its Consequences. Sinauer Associates, Inc. Massachysetts. g. Ross, H.H.1973. Biological Systematics. Addison Wesley Publishing Company, Inc. Massachysetts. h. Skelton, P. 1993. Evolution; a biological and palaeontological approach. Prentice Hall, London. | | Note | Requirement of Animal Taxonomy |